Lipschitz regularity for constrained local minimizers of convex variational integrals with a wide range of anisotropy

نویسندگان

  • Martin Fuchs
  • Michael Bildhauer
چکیده

We establish interior gradient bounds for functions u ∈ W 1 1,loc (Ω) which locally minimize the variational integral J[u, Ω] = ∫ Ω h (|∇u|) dx under the side condition u ≥ Ψ a.e. on Ω with obstacle Ψ being locally Lipschitz. Here h denotes a rather general N-function allowing (p, q)-ellipticity with arbitrary exponents 1 < p ≤ q < ∞. Our arguments are based on ideas developed in [BFM] combined with techniques originating in [F3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational integrals with a wide range of anisotropy

We consider anisotropic variational integrals of (p, q)-growth and prove for the scalar case interior C-regularity of bounded local minimizers under the assumption that q ≤ 2p by the way discussing a famous counterexample of Giaquinta. In the vector case we obtain some higher integrability result for the gradient.

متن کامل

Partial Regularity for Degenerate Variational Problems and Image Restoration Models in Bv

We establish partial and local C1,α-regularity results for vectorial almost-minimizers of convex variational integrals in BV. In particular, we investigate cases with a degenerate or singular behavior of p-Laplace type, and we cover (local) minimizers of the exemplary integrals ∫

متن کامل

Bmo and Uniform Estimates for Multi–well Problems

We establish optimal local regularity results for vector-valued extremals and minimizers of variational integrals whose integrand is the squared distance function to a compact setK in matrix space MN×n. The optimality is illustrated by explicit examples showing that, in the nonconvex case, minimizers need not be locally Lipschitz. This is in contrast to the case when the set K is suitably conve...

متن کامل

EXISTENCE AND REGULARITY OF MINIMIZERS OF NONCONVEX INTEGRALS WITH p− q GROWTH

We show that local minimizers of functionals of the form Z Ω [f(Du(x)) + g(x , u(x))] dx, u ∈ u0 + W 1,p 0 (Ω), are locally Lipschitz continuous provided f is a convex function with p − q growth satisfying a condition of qualified convexity at infinity and g is Lipschitz continuous in u. As a consequence of this, we obtain an existence result for a related nonconvex functional.

متن کامل

A simple partial regularity proof for minimizers of variational integrals

We consider multi-dimensional variational integrals F [u] := Ω f (·, u, Du) dx where the integrand f is a strictly convex function of its last argument. We give an elementary proof for the partial C 1,α-regularity of minimizers of F. Our approach is based on the method of A-harmonic approximation, avoids the use of Gehring's lemma, and establishes partial regularity with the optimal Hölder expo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012